Recording

This video explains how SARS-CoV-2’s spike protein triggers cellular senescence, turning cells into non-functional states. The speaker describes how viral debris, including spike protein and syncytia, can be selectively removed through a slow, careful process, allowing the body to regenerate. The final step involves using binders and chelators to remove the liberated virus and debris from the system. 

This video explains how SARS-CoV-2 can turn cells into “zombie cells” that enter a senescent state, unable to die, repair, or replicate. These cells fuse into syncytia, creating conglomerates that harbor spike proteins and the virus, leading to impaired oxygen exchange in the lungs. This phenomenon was found in 67% of lung pathology cases, contributing to poor gas exchange and long-term lung damage in COVID-19 patients. 

This video discusses the widespread effects of the SARS-CoV-2 virus and spike protein on the body, including how the vaccine’s spike protein production may cause more persistent and diverse organ damage. The conversation highlights the variability in COVID-19 symptoms and outcomes based on immunity and how the vaccine’s bio-distribution may lead to longer-lasting autoimmune responses compared to the virus itself. 

This video explains the entry mechanisms of SARS-CoV-2 and vaccines, comparing how the virus relies on receptors to enter cells, while vaccine-delivered lipid nanoparticles forcefully fuse with any cell, turning it into a spike protein factory. It highlights the concerning exosome shedding of spike proteins, which can spread to other cells like naturally occurring lipid nanoparticles. 

This video highlights groundbreaking research showing the persistence of spike proteins and SARS-CoV-2 long after infection or vaccination. One study found spike proteins in vaccinated patients 187 days later, suggesting ongoing production from transfected cells, while other findings show viral presence in COVID-19 patients up to 654 days after recovery, particularly in the brain and olfactory system. 

 

This video explains how SARS-CoV-2 and its spike protein rapidly infiltrate the brain, affecting critical areas like the brain stem and lacrimal gland. It discusses how phenolic compounds, such as quercetin and resveratrol, help restore arterial stiffness and inhibit inflammation, while also addressing how viral damage blocks the brain’s glymphatic drainage system, leading to toxin buildup. This blockage accelerates neurological diseases like Alzheimer’s and Parkinson’s, even in younger individuals. 

Scroll to Top

Team Member 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.